A comparison of methods to quantify control of the spine

INTRODUCTION

Low back pain (LBP) is associated with changes in trunk neuromuscular control [1].

Problem: Unknown if different movement control assessment techniques quantify similar performance outcomes.

- Local dynamic stability (LDS) and systems identification (SI) are two methods commonly used to assess spine control (Table 1).
- It is important to understand the relationship between LDS and SI outcomes to improve overall spine movement control assessment.

Table 1 Advantages and limitations of LDS and SL in the assessment of spine movement control

Eric Bourdon¹, Jaap van Dieën², Ryan B. Graham¹

	RESULTS			
6D Ei	uclidean Norm			
		S	SI	
		Relax	Resist	
	Flexion/Extension	21.7% ^a	No significant Mode	
λ _{Max}	Rotation	64.7% ^b	No significant Mode	
	Complex	No significant Model	No significant Mode	
	ictors: Admittance gain at 1			
. 1 100	ictors. Marmitarice gain at c).22 and 0.73 Hz, K _p and K _v		
2D L	inear and Angular	Velocities		
			SI	
		Relax	Resist	
	Flexion/Extension	No significant Model	No significant Mode	
λ _{Max} [Rotation	36.5% ^a	21.6% ^b	
	Complex	45.5% ^c	No significant Mode	
a. Pred	ictors: Admittance gain at 1	.08 Hz, K and K _a		
	ictors: B ictors: Admittance gain at C	73 Hz K B and K		
	lotoror, tarrittarroo gairrat e			
	ISCUSSION			
Strong	g Predictors			
		repetitive rotations and		
task	instructions capture	similar movement contr	ol strategies.	
	n quantify a natura tures.	al response to perturb	pations in similar up	
Veak	Predictors			

lable 1. Advantages and	d limitations of LDS and SI ir	h the assessment c	of spine movement control.	120
	Advantages		Limitations	
			 "black box" Underlying causes unknown 	
SI			ized equipment system assumption	λ _{Ma}
treatment (figure	1).	•	ical assessment and	a. Pr b. Pr c. Pr
Figure 1. Theoretical pro	ocess from movement contro	of detection to treat	ment planning.	
Clinical LDS	Good movement	Explore other risk factors		Stro
Assessment	Poor movement behaviour	Laboratory SI assessment	Individualized treatment plan	• Ll ta
	•		S and SI outcomes to and more effective	• Bo
treatment plans.				Wea

METHODS

Participants

n	Age (years)	Height (m)	Mass (kg)
15	35 ± 12.5	1.75 ± 0.08	73 ± 11.6

Protocol

• Participants completed two tasks, LDS (figure 2) and SI (figure 3).

- 35 repeated movement cycles
- Motion capture data of trunk and pelvis collected.

Pseudorandom force perturbations applied to spine system.

response functions used to model

lumbar stiffness (K), damping (B),

velocity (K_v) and acceleration (K_a)

muscle spindle position (K_p) ,

feedback gains [4].

Admittance and reflex frequency

- SI outcomes poorly predict 6D λ_{Max} values during a flexion/extension task and complex movement task.
- Large flexion/extension excursions may require different movement control strategies between tasks.

CONCLUSION

- Different predictive models between 6D and 12D λ_{Max} calculations enforce the importance of uniformly quantifying LDS.
- Similar motor behaviour is quantified by SI and LDS; however, only under specific task instructions.
- These methods capture different movement control strategies in many conditions.
- Development of a consistent framework for movement control assessment is integral to understanding how control of the spine is achieved.

Future Directions

Explore relationship between LDS and SI outputs in LBP patients and

• Maximum Lyapunov exponent (λ_{Max}) calculated using 6 and 12dimensional state space techniques [2,3].

Statistical Analysis

Stepwise linear regression used to build predictive model for λ_{Max} from SI outputs.

DV	Ι					
λ _{Max}	Admittance < 1 Hz	K	В	K _p	K _v	K _a

Adjusted R squared expressed as % of λ_{Max} variance described by Ivs.

other populations.

Explore additional upright movement tasks to find optimal relationship between LDS and SI outputs. This will improve clinical LDS assessment of movement control and make detailed SI assessment more efficient.

REFERENCES

- [1] van Dieën, J.H., Selen, L.P.J., Cholewicki, J., 2003. Trunk muscle activation in low-back pain patients, an analysis of the literature. J. Electromyogr. Kinesiol. 13, 333-351.
- [2] Granata, K.P., Gottipati, P., 2008. Fatigue influences the dynamic stability of the torso. Ergonomics 51, 1258–1271.
- [3] van Drunen, P., Maaswinkel, E., van der Helm, F.C.T., van Dieën, J.H., Happee, R., 2013. Identifying intrinsic and reflexive contributions to low-back stabilization. J. Biomech. 46, 1440–1446.
- [4] Dupeyron, A., Rispens, S.M., Demattei, C., van Dieën, J.H., 2013. Precision of estimates of local stability of repetitive trunk movements. Eur. Spine J. 22, 2678–2685.

¹School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada ²Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands Eric Bourdon, MSc Human Kinetics student, email: ebour017@uottawa.ca

